top of page
Current Research Areas
Mode engineering and beam combining of diode lasers
Hybrid photonic and quantum system integration 
Optical resonators and quantum photonics

 
Recent News:

  • 08/2023 Our group has been recently awarded a NSF ExpandQISE project (led by Winston-Salem State University) as an expert/external collaborator

       https://new.nsf.gov/news/more-institutions-participate-quantum-science

  • 11/2022 Our group has been recently awarded three DoD STTR projects, in collaboration with Forward Photonics, Corcoran Engineering, and PM&AM Research, respectively

  • 05/2022 Dr. Zhu gave an invited talk at the CLEO conference (San Jose, CA)​

  • 10/2021 Our group will lead the direct diode research for Army SMDC's Advanced Laser Program at Clemson

  • 09/2021 Our group received a grant from National Science Foundation on quantum interconnect

        https://news.clemson.edu/clemson-scientists-research-could-help-unleash-the-power-of-quantum-computers/

        https://www.nsf.gov/awardsearch/showAward?AWD_ID=2137776

  • 08/2019 Dr. Zhu gave an invited talk at the SPIE Photonics+Optics conference 

  • 06/2019 Dr. Zhu gave an invited talk at the IMCO conference (HongKong, China)​

  • 11/2018 Our group received a grant from National Science Foundation on quantum photonic integrated circuits

        http://newsstand.clemson.edu/lin-zhu-participates-in-research-funded-by-national-science-foundation/

        https://www.nsf.gov/news/news_summ.jsp?cntn_id=296699

  • 07/2018 Dr. Zhu gave an invited talk at the IMCO conference (Shanghai, China)​

  • 03/2018 Dr. Zhu gave an invited talk at the ECE department, John Hopkins University

 

  • 09/2017 Dr. Zhu gave an invited talk at the EE department, University of Texas at Arlington  

 

  • 05/2017 Our group received a Multidisciplinary Research Initiative grant from the HEL-JTO on diode lasers

        http://newsstand.clemson.edu/zhu-receives-1-4-million-for-laser-weapon-research/

        https://www.photonics.com/Article.aspx?AID=62313

        http://www.foxnews.com/tech/2017/06/01/us-military-is-developing-star-wars-style-lasers.html

        http://nypost.com/2017/05/31/us-military-developing-star-wars-like-lasers/

        http://www.dailymail.co.uk/sciencetech/article-4556310/DoD-reveals-3-2m-science-Star-Wars-project.html

        http://wspa.com/2017/05/30/clemon-professors-building-laser-weapon/

        http://gsabusiness.com/news/education/72245/

        http://www.thestate.com/news/state/south-carolina/article153494519.html

        https://greenvillejournal.com/2017/05/31/clemson-researchers-work-improve-lasers-military-use/

       

  • 04/2017 Our group received a Defense University Research Instrumentation Program(DURIP) grant 

        https://www.defense.gov/Portals/1/Documents/pubs/FY17-DURIP-Winners.pdf

  • 03/2017 Dr. Zhu gave an invited talk at the ECE department, Northwestern University  

        http://www.mccormick.northwestern.edu/eecs/events/2017.3.16...lin%20zhu

Peer-reviewed Journal Papers:

[80]  C. Porter, S. Zeng, X. Zhao, and L. Zhu, Hybrid integrated chip-scale laser systems, APL Photonics 8, 080902, 2023 (Featured Cover Article)

[79] S. Zeng, X. Zhao, L. Sweatt, C. Porter, and L. Zhu, Unidirectional hybrid diode laser through integration of
hook-shaped traveling-wave semiconductor optical amplifier and Taiji ring resonator, Optics Letters 48, 1132-1135, 2023

[78] M. Li, L. Chang, L. Wu, J. Staffa, J. Ling, U. A. Javid, S. Xue, Y. He, R. Lopez-rios, T. J. Morin, H. Wang, B. Shen, S. Zeng, L. Zhu, K. J. Vahala, J. E. Bowers, and Q. Lin, Integrated Pockels laser, Nat. Commun. 13, 5344, 2022

[77] S. Zeng, X. Zhao, L. Sweatt, and L. Zhu, Watt-level beam combined diode laser systems in a chip-scale hybrid photonic platform, Opt. Express 30, 23815-23827, 2022

[76] X. Zhao, S. Zeng, L. Sweatt, and L. Zhu, Extreme double/triple asymmetric epitaxial structure based diode lasers for high powers and high efficiencies, IEEE Photonics Journal 14, 1-11, 2022

[75] R. J. Terry, D. Vinton, C. D. McMillen, X. Chen, L. Zhu, J. W. Kolis, Hydrothermal single crystal growth and structural investigation of the stuffed tridymite family as NLO materials, Journal of Alloys and Compounds 909, 164634, 2022

[74] X. Zhao, S. Zeng, L. Sweatt, and L. Zhu, High power single mode triple-ridge waveguide semiconductor laser based on supersymmetry, AIP Advances 11, 095216 , 2021

[73] S. Zeng, X. Zhao, L. Sweatt, and L. Zhu, Photonic integrated circuits based hybrid integration for wavelength beam combining, Optics Letters 45, 6338-6341, 2020

[72] Y. Zhu, S. Zeng, and L. Zhu, Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a Silicon Nitride photonics platform, Photonics Research 8, 375-380, 2020

[71] S. Zeng, X. Zhao, Y. Zhu, C. Dove, and L. Zhu, Slope efficiency of integrated external cavity hybrid lasers: A general model and analysis, AIP Advances 9, 035201, 2019

[70] Y. Zhu and L. Zhu, Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4 hybrid integration, Optics Express 27, 2354-2362, 2019

[69] Y. Zhu and L. Zhu, Accessing the exceptional points in coupled Fabry–Perot resonators through hybrid integration, ACS Photonics 5, 4920-4927, 2018

[68] Y. Zhu and L. Zhu, Integrated single frequency, high power laser sources based on monolithic and hybrid coherent beam combining, IEEE Journal of Selected Topics in Quantum Electronics 23, 8300908, 2018 (Invited)

[67] R. J. Terry, C. D. McMillen, X. Chen, Y. Wen, L. Zhu, G. Chumanov, and J. W. Kolis, Hydrothermal single crystal growth and second harmonic generation of Li2SiO3, Li2GeO3 and Li2Si2O5, Journal of Crystal Growth 493, 58-64, 2018

[66] Y. Zhu, Y. Zhao, and L. Zhu, Loss induced coherent combining in InP-Si3N4 hybrid platform, Scientific Reports 8, 878, 2018

[65] Y. Wu, L. Xia, N. Cai, and L. Zhu, A highly precise demodulation method for fiber Fabry-Perot cavity through spectrum reconstruction, IEEE Photonics Technology Letters 30, 435-438, 2018
[64] X. Zhao, C. Yuan, Y. Zhu, X. Chen, and L. Zhu, Controlling the interaction between plasmon-induced transparency and guided mode resonance, Optics Express 25, 30043-30050, 2017
[63] Y. Zhu, Y. Zhao, and L. Zhu, Modal discrimination in parity-time-symmetric single microring lasers, IEEE Photonics Journal 9, 2700908, 2017
[62] Y. Zhu, Y. Zhao, and L. Zhu, Two-dimensional photonic crystal Bragg lasers with triangular lattice for monolithic coherent beam combining, Scientific Reports 7, 10610, 2017
[61] H. Yi, L. Xia, J. Xu, C. Yu, Y. Wu, C. Li, and L. Zhu, A liquid-level sensing technique based on differential detection of correlation peaks from broadband chaos, IEEE Photonics Journal 9, 6803809, 2017
[60] J. Rohollahnejad, L. Xia, R. Cheng, Y. Ran, U. Rahubadde, J. Zhou, and Lin Zhu, TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers, Optics Express 25, 670-680, 2017 

[59] X. Zhao, L. Zhu, C. Yuan, and J. Yao, Tunable plasmon-induced transparency in grating-coupled doulble layer graphene hybrid system at far-infrared frequencies, Optics Letters 41, 5470-5473, 2016

[58] X. Zhao, L. Zhu, C. Yuan, and J. Yao, Reconfigurable hybrid metamaterial waveguide system at terahertz regime, Optics Express 24, 18244-18251, 2016

[57] X. Zhao, C. Yuan, L. Zhu, and J. Yao, Graphene-based tunable terahertz plasmon-induced transparency metamaterial, Nanoscale 8, 15273-15280, 2016

[56] Y. Zhu, Y. Zhao, J. Fan, and L. Zhu, Modal gain analysis of Parity-Time-Symmetric distributed feedback lasers, IEEE Journal of Selected Topics in Quantum Electronics 22, 1500207, 2016

[55] Y. Zhao, Y. Zhu, and L. Zhu, Integrated coherent combining of angled-grating broad-area lasers, Frontiers of Optoelectronics 9, 290-300, 2016

[54] J. Fan, C. Huang, and L. Zhu, Optomechanical nonlinearity enhanced optical sensors, Optics Express 23, 2973-2981, 2015

[53] C. Huang, Y. Zhao, J. Fan, and L. Zhu, Controllable optomechanical coupling in serially-coupled triple resonators, AIP Advances 4, 127146, 2014

[52] J. Fan, L. Zhu, M. Dogan and J. Jacob, Improve power conversion efficiency of slab coupled optical waveguide lasers, Optics Express 22, 17666-17672, 2014

[51] Y. Zhao and L. Zhu, Folded cavity angled-grating broad-area lasers, Optics Express 21, 24087-24092, 2013

[50] C. Huang, J. Fan, R. Zhang, and L. Zhu, Optomechanical Transductions in Single and Coupled Wheel Resonators, Optics Express 21, 6371-6376, 2013

[49] Y. Zhao and L. Zhu, Improve beam quality of coherently combined angled-grating broad-area lasers, IEEE Photonics Journal 5, 1500307,2013

[48] H. Hu , X. Zeng , D. Ji , L. Zhu, and Q. Gan,Efficient end-fire coupling of surface plasmons on flat metal surfaces for improved plasmonic Mach-Zehnder interferometer, Journal of Applied Physics 113, 05310, 2013

[47] C. Huang, J. Fan, R. Zhang, and L. Zhu, Internal frequency mixing in a single optomechanical resonator, Applied Physics Letters 101, 231112, 2012

[46] S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, On loss in silicon core optical fibers, Opt. Mater. Express 2, 1511-1519, 2012

[45] J. Fan and L. Zhu, Enhanced optomechanical interaction in coupled microresonators, Optics Express 20, 20790-20799, 2012

[44] C. McMillen, M. Manna, J. Fan, L. Zhu, and J. Kolis, Revisiting the Hydrothermal growth of YAG, Journal of Crystal Growth 356, 58-64, 2012

[43] C. Huang, J. Fan, and L. Zhu, Dynamic nonlinear thermal optical effects in coupled ring resonators, AIP Advances 2, 032131, 2012

[42] Y. Zhao and L. Zhu, On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers, Optics Express 20, 6375-6384, 2012

[41] Y. Zhao, J. Fan, and L. Zhu, Modal and scalability analysis of a zigzag array structure for passive coherent beam combining, Journal of the Optical Society of America B 29, 650-655, 2012

[40] J. Ballato, C. McMillen, T. Hawkins, P. Foy, R. Stolen, R. Rice, L. Zhu, and O. Stafsudd, Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers, Opt. Mater. Express 2, 153-160, 2012

[39] J. Fan, C. Huang, and L. Zhu, A compact, broadband slot waveguide polarization rotator, AIP Advances 1, 042136, 2011

[38] S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, Reactive molten core fabrication of silicon optical fiber, Opt. Mater. Express 1, 1141-1149, 2011

[37] N. Gupta, C. McMillen, R. Singh, R. Podila, A. M. Rao, T. Hawkins, P. Foy, S. Morris, R. Rice, K. F. Poole, L. Zhu, and J. Ballato, Annealing of silicon optical fibers, Journal of Applied Physics 110, 093107, 2011

[36] P. Bhattacharya, P. Chen, M. N. Spano, L. Zhu, and P. C. Ke, Copper detection utilizing dendrimer and gold nanowire-induced surface plasmon resonance, Journal of Applied Physics 109, 014911, 2011

[35] C. Huang and L. Zhu, Proposed electrically-pumped, IIIV-metal hybrid plasmonic lasers, Applied Physics B 103, 643-647, 2011

[34] Y. Zhao and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, Journal of the Optical Society of America B 27 (6): 1260-1265, 2010

[33] C. Huang and L. Zhu, Enhanced optical forces in two dimensional hybrid and plasmonic waveguides, Optics Letters 35 (10): 1563-1566, 2010

[32] L. Zhu, Modal properties of hybrid plasmonic waveguides for nanolaser applications, IEEE Photonics Technology Letters 22 (8): 535-537, 2010

[31] Q. Gan, Y. Gao, Q. Wang, L. Zhu, and F. Bartoli, Surface plasmon waves generated by nanogrooves through spectral interference, Physics Review B 81, 085443, 2010

[30] P. Chen, Q. Gan, F. Bartoli, and L. Zhu, Spoof surface plasmon assisted light beaming in mid-infrared, Journal of the Optical Society of America B 27 (4): 685-689, 2010

[29] P. Chen, Q. Gan, F. Bartoli, and L. Zhu, Near-Field-Resonance-Enhanced plasmonic light beaming, IEEE Photonics Journals 2 (1): 8-17, 2010

[28] L. Zhu, Frequency dependence of the optical force between two coupled waveguides, Optics Letters 34 (18): 2870-2872, 2009

[27] G. A. DeRose, L. Zhu, J. K. S. Poon, A. Yariv, and A. Scherer, Periodic sub-wavelength electron beam lithography defined photonic crystals for mode control in semiconductor lasers, Microelectronic Engineering 85 (5-6): 758-760, 2008

[26] L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, Room temperature continuous wave operation of single-mode, edge-emitting photonic crystal Bragg lasers, Optics Express 16 (2): 502-506, 2008

[25] L. Zhu, A. Scherer, and A. Yariv, Modal gain analysis of transverse Bragg resonance waveguide
lasers with and without transverse defects, IEEE Journal of Quantum Electronics 43 (10): 934-940, 2007

[24] J. K. S. Poon, L. Zhu, J. M. Choi, G. A. DeRose, A. Scherer, and A. Yariv. Active coupled-resonator optical waveguides - Part II: current injection InP-InGaAsP Fabry-Perot resonator arrays, Journal of the Optical Society of America B 24 (9): 2389-2393, 2007

[23] L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, Spatial modal control of two dimensional photonic crystal Bragg lasers, Optics Letters 32 (16):  2273-2275, 2007

[22] L. Zhu, X. K. Sun, G. A. DeRose, A. Scherer, and A. Yariv, Continuous-wave operation of electrically pumped, single-mode, edge-emitting photonic crystal Bragg lasers, Applied Physics Letters 90 (26): 261116, 2007

[21] L. Zhu, P. Chak, J. K. S. Poon, G. A. Derose, A. Yariv, and A. Scherer, Electrically-pumped, broad-area, single-mode photonic crystal lasers, Optics Express 15 (10): 5966-5975, 2007

[20] L. Zhu, G. A. DeRose, A. Scherer, and A. Yariv, Electrically-pumped, edge-emitting photonic crystal lasers with angled facets, Optics Letters 32 (10): 1256-1258, 2007

[19] G. A. DeRose, L. Zhu, J. M. Choi, J. K. S. Poon, A. Yariv, and A. Scherer, Two dimensional Bragg grating lasers defined by Electron Beam Lithography, Journal of Vacuum Science and Technology B 24 (6): 2926-2930, 2006

[18] L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv and A. Scherer, Electrically pumped two dimensional Bragg grating lasers, Optics Letters 31 (12): 1863-1865, 2006

[17] L. Zhu, Y. Y. Huang, and A. Yariv, Integration of a multimode interference coupler with a corrugated sidewall Bragg grating in planar polymer waveguides, IEEE Photonics Technology Letters 18 (5-8): 740-742, 2006

[16] J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, Polymer microring coupled resonator optical waveguides, Journal of Lightwave Technology 24 (4): 1843-1849, 2006

[15] J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, Transmission and group delay of microring coupled resonator optical waveguides, Optics Letters 31 (4): 456-458, 2006

[14] L. Zhu, Y. Y. Huang, and A. Yariv, Integrated microfluidic variable optical attenuator, Optics Express 13 (24): 9916-9921, 2005

[13] L. Zhu, Y. Y. Huang, W. M. J. Green, and A. Yariv, Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing, Optics Express 12 (25): 6372-6376, 2004

[12] Y. J. Zhang, L. Zhu, Z. G. Gao, M. H. Chen, Y. Dong, and S. Z. Xie, A simple model for optimization design of high performance In1-x-yGayAlxAs strained MQW DFB lasers, Optical and Quantum Electronics35 (9): 879-886, 2003

[11] L. Zhu, Y. J. Zhang, Y. Dong, M. H. Chen, L. Xia, and S. Z. Xie, Impact of optical (de)multiplexers on 40 Gbit/s WDM transmission system, Optics Communications 217 (1-6): 221-225, 2003

[10] Y. J. Zhang, L. Zhu, Z. G. Gao, M. H. Chen, and S. Z. Xie, Design of the optical label eraser for DWDM network systems, Microwave and Optical Technology Letters 36 (6): 489-491, 2003

[9] L. Zhu, M. H. Chen, Y. J. Zhang, and S. Z. Xie, Impacts of cascaded filters with group delay ripples on 40-Gb/s WDM transmission system, IEEE Photonics Technology Letters 14 (11): 1518-1520, 2002

[8] L. Zhu, Y. H. Ma, G. Z. Wang, L. Xia, and S. Z. Xie, General computer model for both erbium-doped fiber amplifier and fiber Raman amplifier, Optical Engineering 41 (8): 1805-1808, 2002

[7] L. Zhu, G. Z. Wang, L. Xia, and S. Z. Xie, Numerical investigation of dispersion-managed system with concatenated chirped fiber Bragg grating, Microwave and Optical Technology Letters33 (3): 163-165, 2002

[6] Y. Z. Yin, X. F. Chen, L. Zhu, K. Xu, Z. Q. Lin, X. H. Li, and S. Z. Xie, Analytical expression and system simulation of eye opening penalty for chirped sampled Bragg grating dispersion compensator, Optics Communications 203 (1-2): 93-99, 2002

[5] L. Zhu, G. Z. Wang, L. Xia, and S. Z. Xie, System stimulation for dispersion compensation with nonideal chirped fiber Bragg grating, International Journal of Infrared and Millimeter Waves 23 (3): 465-473, 2002

[4] L. Zhu, G. Z. Wang, L. Xia, and S. Z. Xie, System simulation of dispersion compensation with specially sampled fiber Bragg grating, Optics Communications 198 (1-3): 89-93, 2001

[3] Y. J. Zhang, L. Zhu, Z. G. Gao, M. H. Chen, Y. Dong, W. Y. Chen, S. Y. Liu and S. Z. Xie, Optimization design of active structure of strained MQW DFB lasers, Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 24 (1): 6-10, 2003

[2] Y. J. Zhang, L. Zhu, Z. G. Gao, M. H. Chen, Y. Dong, W. Y. Chen, S. Y. Liu and S. Z. Xie,  Investigation of mode and modulation responses in semiconductor PS-DFB lasers: Use of a Vector-Newton method, Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 24 (9): 935-940, 2002

[1] L. Zhu, G. Z. Wang, L. Xia, and S. Z. Xie, Computer simulation of optical fiber communication system, Guangdianzi Jiguang/Journal of Optoelectronics Laser, 12 (12): 1276-1279, 2001

bottom of page